

FINAL REPORT OF THE MANAGEMENT SUPPORT CONTRACTOR FOR THE RESIDENTIAL SOLAR HEATING DEMONSTRATION

VOLUME III. HIGH TEMPERATURE EXPOSURE OF WOOD STRUCTURES IN SOLAR SYSTEMS 1

JUNE 1983

by BE&C Engineers, Inc. (A Boeing Subsidiary)

for

Office of Policy Development & Research Department of Housing and Urban Development

> H-2372 B 5.01.501

The research and studies forming the basis for this report were conducted pursuant to a contract with the Department of Housing and Urban Development (HUD). The statements and conclusions contained herein are those of the contractor and do not necessarily reflect the views of the U.S. Government in general or HUD in particular. Neither the United States nor HUD makes any warranty, expressed or implied, or assumes responsibility for the accuracy or completeness of the information herein.

PREFACE

This volume is one of five composing the final report written by BE&C Engineers, a Boeing subsidiary. Under contract to the U.S. Department of Housing & Urban Development (HUD), Boeing provided management support for the Residential Solar Heating Demonstration. The demonstration, part of the National Program for Solar Heating and Cooling, began in 1975. During the next four years, HUD awarded over 900 grants to builders/developers who were to install solar systems on dwellings new or retrofitted; 497 grants actually resulted in construction.

Volume I gives the general history of the demonstration from the contractor's viewpoint. The other volumes cover specific technical issues.

Volume II--Solar Repair Program Volume III--High Temperature Exposure of Wood Structures in Solar Systems Volume IV--Corrosion Problems Volume V--Summary of Data Findings

TABLE OF CONTENTS

		Page
SUMMARY	Y	1
CHAPTER	A 1. BACKGROUND	3
CHAPTER	2. COLLECTOR CONDITION SURVEY	9
CHAPTER	3. SOLAR ATTIC/SITE-BUILT COLLECTOR INVESTIGATIONS	19
CHAPTER	A. DATA SUMMARY	23
CHAPTER	5. DATA ANALYSIS	29
CHAPTER	C6. RECOMMENDATIONS	41
REFEREN	CES	43
ATTACHN	MENTS:	
Α.	Temperature Sensor Locations and Recorded Data, Configuration 1	A-1
в.	Temperature Sensor Locations and	. .
	Recorded Data, Configuration 2	B-1
с.	Temperature Sensor Locations and Recorded Data, Configuration 3	C-1
D.	Forest Products Laboratory Report: Rafter Analysis, Configurations 1 and 3	D-1
Е.	HUD Solar Attic Collector System Safety Conditions	E-1

LIST OF ILLUSTRATIONS

,

Figure No.		Page
1-1	Burned Collector, Boulder Fire	3
1-2	Burned Collector, Boulder Fire	4
1-3	Copper-Clad Absorber Damage	5
1-4	Copper-Clad Absorber Damage	5
1-5	Investigation Chronology	6
2-1	Solar Attic Damage	12
2-2	Solar Attic Damage	13
2-3	Solar Attic Damage	14
2-4	Solar Attic Damage	14
2-5	Site-Built Collector Cutaway (Air)	15
2-6	Site-Built Collector Cutaway (Liquid)	16
3-1	Solar System Configuration 1	19
3-2	Solar System Configuration 2	20
3-3	Solar System Configuration 3	21
5-1	Maximum Rafter Temperatures, Solar Attics	30
5-2	Solar Insolation, Solar Attics	31
5-3	Maximum Attic Ambient Temperatures, Vents Closed	31
5-4	Maximum Rafter Temperatures, Site-Built Air Collector, Configuration 3	32
5-5	Solar Insolation, Site-Built Collector, Configuration 3	33
5-6	Maximum Air Temperatures, Site-Built Collector, Configuration 3	33
5-7	Rafter Internal Temperatures, Solar Attics, Forced and Natural Ventilation	35

LIST OF ILLUSTRATIONS (continued)

`,

Figure No.		Page
5-8	Maximum Solar Attic Ambient Temperatures, Forced and Natural Ventilation	36
5-9	Effect of Reflective Surfaces on Rafter Internal Temperatures	37

· ·

LIST OF TABLES

· ·

Table No.		Page
2-1	Collector Condition Survey	10
4-1	Configuration 1, Maximum Temperature Data	24
4-2	Configuration 2, Maximum Temperature Data	26
4-3	Configuration 2, Maximum Temperatures with Reflective Surfaces	27
4-4	Configuration 3, Maximum Temperature Data	28
5-1	How Reflective Coatings Affect Rafter Temperatures	38

. •

SUMMARY

This document provides solar energy system engineers, designers, and manufacturers with actual experience-type data related to high temperature exposure of wood structures in solar systems, and with design recommendations oriented to reducing these temperatures during use.

The need for data and the recommendations included in this document was recognized early in the Residential Solar Heating Demonstration, when a house fire started in a roof-mounted collector. Prolonged periods of stagnation had degraded the collector's foam insulation.

A collector condition survey was conducted to identify collector systems that were susceptible to fire hazards. Thirty-six systems, including solar attics, site-built air and liquid collectors, and manufactured collectors, were identified as potentially hazardous and investigated. Results showed that no apparent fire-related lifesafety hazards were present in the 36 systems; however, significant degradation of thermal insulation and adjacent wood structure was observed. The most severe degradation was found in solar attics and site-built collectors.

Three projects, two with solar attics and one with a site-built air system, were selected for further investigation. These projects were instrumented to determine maximum wood temperatures during periods of high solar insolation. Measurements were taken under various conditions including stagnation (system not operating and no ventilation), natural ventilation, forced ventilation, and with wood surfaces shielded by either reflective coatings or thermal insulation. This document contains the analyses of these data and, based on these analyses, provides solar energy system engineers, designers, and manufacturers with recommended methods for reducing temperatures of wood structures in solar systems. Recommendations are made for both solar attics and site-built collectors. In each case the intent is to lower air temperatures, reduce the thermal absorptance of structural wood surfaces, and provide thermal insulation between wood and gypsum board surfaces and the collector absorber materials.

CHAPTER I. BACKGROUND

The solar demonstration included some solar system configurations where wood and other structural materials and insulation were exposed to elevated temperatures for periods greatly exceeding the program's 30-day stagnation test requirement. Concern over this condition intensified during visits to several solar systems to investigate operating problems. U.S. Department of Housing and Urban Development (HUD) investigators then noted instances of heat-related degradation of materials in collectors. Degradation was seen to occur in wood and in foam insulations--urethane, polyurethane, isocyanurate, polyisocyanurate, and polystyrene--used within collector boxes. It appeared to indicate that potentially hazardous, fire-related conditions could exist in certain site-built and manufactured collectors.

BOULDER COLLECTOR FIRE

This suspicion was further intensified by a fire which occurred in the collector of a solar system at Boulder, Colorado. The fire originated in a roof-mounted collector and was caused by degradation of the collector's foam insulation after it had experienced prolonged periods of stagnation. This exposed the collector's plywood case to high temperatures which, in time, caused the plywood to ignite. The National Bureau of Standards investigated the fire; the results of the investigation have been released in a report, <u>Solar Collector Fire Incident Investigation</u> (Reference 1). Figures 1-1 and 1-2 illustrate the nature of the damage involved.

Figure 1-1. Burned Collector, Boulder Fire

^{*}References are listed on p. 43, following Chapter 6 in this volume.

Figure 1-2. Burned Collector, Boulder Fire

COPPER-CLAD PLYWOOD ABSORBERS

Additionally, of 30 collector systems in the HUD program that used manufactured copper-clad plywood absorbers, several were found to have serious heat-related structural degradation of the plywood cores. Most of the cores examined in the investigation of that problem showed charring of the plywood and some were completely disintegrated. Figures 1-3 and 1-4 illustrate the conditions encountered in these absorbers. All roofs of this type were replaced or removed. No further discussion of the copper-clad plywood absorbers or of the Boulder fire appears in this volume. However, both the fire and the copper-clad plywood absorbers are discussed in Volume II of the final report.

COLLECTOR CONDITION SURVEY

After HUD completed its own investigation of the Boulder fire, it decided to investigate all HUD solar grant projects where the solar collection system contained materials that would degrade and possibly create a life-safety hazard if exposed to long-term stagnation conditions. Figure 1-5 is a chronological illustration of the fire incident and the resultant HUD investigations.

During the first half of 1981, based on Boeing/Dubin-Bloome Associates recommendations, HUD authorized a survey of selected collector systems installed under HUD grants to determine the current collector condition and the immediate

Figure 1-3. Overall View of Damage to Copper-Clad Plywood Absorber

Figure 1-4. Close-Up of Damage to Copper-Clad Plywood Absorber

Figure 1-5. Investigation Chronology

potential for collector-caused fires that might present life-safety hazards. Approximately 1,100 active system designs were reviewed to identify those with a high degree of risk--namely those systems involving solar attics; site-built collectors, incorporated into the roof structure; and roof-mounted manufactured collectors containing foam, plywood, or other flammable material in contact with or in close proximity to the absorber plate. The initial review identified 189 potential high-risk systems. The 189 system designs were examined further, resulting in the identification of 54 systems with the highest potential hazard risk. These 54 systems were then subjected to a field survey.

The results revealed no apparent immediate fire-related, life-safety hazards in the systems investigated; however, it was noted that maximum wood surface temperature measurements were found to exceed 150° F* in solar attic configurations. The results of the field survey are the subject of a Dubin-Bloome Associates report entitled "Collector Condition Survey Report" which has been adapted as Chapter 2 of this document.

^{*}These measurements were made in late March and early April and therefore could be expected to increase during the summer months.

SOLAR ATTIC/SITE-BUILT COLLECTOR SURVEY

Results of the solar attic installation survey raised concerns about the long-term effects of high temperatures on the structural strength of wood and other materials used in solar attics and site-built collectors. Another survey and study was conducted during the summer of 1981 to determine, by field investigation, the limits of the temperature environment found in typical installations under different conditions of use. The three sites selected for data gathering were considered to be most representative of other solar attic and site-built collector configurations installed during the demonstration program. Data were also obtained from two non-solar attics to be used for comparison.

Temperatures in the wood were taken under varying conditions to approximate normal use and stagnation. Some wood samples were also obtained and sent to the Forest Products Laboratory in Madison, Wisconsin, for analysis. Documentation of the results of this survey and study appears in Chapters 3 through 6.

CHAPTER 2. COLLECTOR CONDITION SURVEY

The collector fire at Boulder, Colorado, drew attention to fire, health, and safety concerns. This chapter discusses the resulting investigation of projects in the solar demonstration program. It also discusses impaired performance caused by collectors that overheat.

SITE DETERMINATION

Following the Boulder fire, a search was made of manufacturers' literature, involving some 1,100 systems, to determine which collectors employed wood or wood products or one of the foam insulations. Sixteen manufacturers marketed such collectors, which were used by 84 demonstration grantees. An additional 23 grantees used the same materials in site-built or solar attic systems. Therefore, 107 grantees had collectors using potentially hazardous materials in 189 systems.

Further investigations of the problem led to the conclusion that the most serious condition might occur in those systems that either employed wood or had the foam insulation in direct contact with the absorber plate and that were flush mounted or integrated into the roof. This rationale is based on the hazard potential suggested by independent fire investigation in the "Boulder incident," as these conditions were a factor in the Boulder fire. Using this basis for determination, 33 grants comprising 54 individual systems were identified for field investigation. Table 2-1 lists the grants.

INVESTIGATION METHODS

Site inspection involved removing samples by drilling cores from the collector insulation and composite wood/metal absorber plates. The procedure gave physical evidence of deterioration of materials, if existent.

In addition to the coring of the materials present in the collector or energy gathering structure, temperature measurements of the air and surfaces in the collector were taken. The temperature measurements were used in determining the severity of the heat conditions encountered.

Visits were made to all 54 system locations. In most instances, cores were obtained from attic spaces without difficulty. Occasionally glazings had to be removed to obtain insulation samples or probe wood elements of the collector. A 1" to 1%" coring drill was used to obtain the cores; a digital thermometer was used to obtain the surface temperature data. The observations resulting from this activity are summarized below.

SOLAR ATTICS-AIR

Nineteen solar attic systems with a roof aperture opening to radiate the interior of the attic space were investigated. The entire collection area (plywood, gypsum board, wood) is typically painted flat black. Air is the transfer medium.

TABLE 2-1 COLLECTOR CONDITION SURVEY

									EMS	ING	со		TOR		,IAL	
GRANT NO.	-	NUMBER OF SYST	TYPE OF SYSTEW L-LIQUID H-HEAT A-AIR W-DHW	ATTIC TYPE	SITE-BUILT	MANUFACTURED COLLECTOR	FLUSH-MOUNTED	TYPE OF POTENT HAZARD	CONDITIONS OBSERVED							
2423	Innovative Systems Hamburg, NY	1	L HW		x		×	Wood	Charring of sheething							
2428	Cambridge Development Group Columbia, SC	2	A HW	x				Wood	Pyramidal optics system Charring of wood Lesky roof							
2450	Helio Thermics Inc. Greenville, SC	1	A HW	x				Wood	No discoloration SFC temp between 130-150 F							
2458	Church Community Corp. Newport , RI	1	A HW		×		x	Wood	No discoloration							
26 02	Mission Viejo Co. Aurora, Colo.	1	L HW			x	x	Insul.	No discoloration							
2702	Town of Marion Marion, Mass.	3	нw			x	x	Insul.	Light discoloration							
2715	Pinewood Manor, Inc. Corum, Lł, NY	1	H N		×		×	Wood Insul,	No discoloration thru charring, Temp 130-150 F							
2744	Helio Thermics, Inc. Greenville, SC	2	A ₩	x				Wood	No discoloration SFC temp above 150F							
2789	Michael Corbett Davis, Calif.	1	L. ₩			x	×	Wood	No discoloration							
2792	Colorado Park Housing Palo Alto, Calif.	1	L ₩			x	x	Insul.	Heavy discoloration							
8 032	Joseph Real Estate W. Springfield, Mass.	1	Ĥ		×		x	Masonite	No discoloration							
8034	Worcester Polytech Inst. Worcester, Mass.	1	L W			x	Rack	insul.	Light discoloration							
8036	Style Craft Homes Keene , NH	1	ŵ		x		x	Aspenite	No discoloration							
8037	Forest Park Village North Conway, NH	12	Å ₩		x		x	Insul. Wood	Light discoloration of insul. No discoloration of wood. Possible structure weakness							
8043	M. F. Smith Jamestown, RI	' 1	L HW		×		x	Wood	No discoloration Possible structural weakness							
8074	Page Associates, Inc. Pinehurst, NC	1	ŵ	×				Wood	No discoloration SFC temp above 150F Powery drywall cores							
8178	Ray L. Hasse Yavapai, Ariz.	1	L HW		×		x	Wood	No discoloration							
82 03	John DeLapp Design Devis, Calif.	1	L HW			×	x	Wood	No discoloration							

TABLE 2-1 (cont.) COLLECTOR CONDITION SURVEY

.

		S	<u> </u>		TYPE				
GRANT NO.	-	NUMBER OF SYSTE	TYPE OF SYSTEM L-LIQUID H-HEATIN A-AIR W-DHW	ATTIC TYPE	SITE-BUILT 3	MANUFACTURED D	FLUSH-MOUNTED	TYPE OF POTENTIA HAZARD	CONDITIONS OBSERVED
8 207	Mar-Mac Development Monterey, Calif.	2	Ĥw	×				Wood	No discoloration SFC temp above 150F Possible structural weakening
8310	Jean Cayer, Inc. Shelton, Conn.	1	L HW	×				Wood	Pyramidal optics system No discoloration
8 312	Summerwood Associates Old Saybrook, Conn.	1	L HW	×				Wood	Pyramidal optics system No discoloration
B 315	National Homes Corp. Lafayette, Ind.	1	A H	×				Wood	No discoloration SFC temp above 150F Powdery drywall cores
8 317	Turtle Valley Housing Homestead , Pa.	1	¥*	×				Wood	Light-heavy charring SFC temp between 130-150 F Possible structural weakening
8325	Marteq Corp. Murfreesboro, Tenn.	1	A HW	×				Wood	Light-heavy charring SFC temp betwen 130-150F Possible structural weakening
8326	Solar Crafters, Inc. Strawberry Plains, Tenn.	1	I>	x				Wood	No discoloration SFC temp beween 130-150F
8328	Lovins Cont. Co. Somerset, Ky.	2	4¥	x				Wood	Light-heavy charring SFC temp between 130-150F Possible structural weakening
8329	Kentucky Mountain Hsg. Gray Hawk, Ky.	1	Å ¥	x				₩ood	Light-heavy charring SFC temp between 130-150F Possible structural weakening
8330	Nastrom Const. Co. Cambridge, Minn.	1	L HW			×	×	Insul.	No discoloration
8 331	Hobmar Homes, Inc. Medina, Minn.	1	A HW	x				Wood	No discoloration SFC temp between 130-150F Powdery drywall cores
836 8	Deer Hill Solar Corp. Carmel, NY	2	L HW		×		×	Wood	No discoloration
8428	Lamplighter Const. Idaho Fails, Ida.	1	н Н			×	×	insul.	No insulation in collector
966 9A	Helio Thermics, Inc. Greenville, SC	1	Å	×				Wood	No discoloration
8713	Wonderland Hill Development Boulder, Colo.	4	A H	×				Wood	No discoloration

Plywood surfaces of two systems had cracks in the first ply but otherwise showed no unusual deterioration. These cracks appeared to have resulted from heat. Gypsum board cores in three systems showed excessive dryness of gypsum to the extent that the cores could not be taken whole. The surfaces of the gypsum board did not show any defects.

Temperatures recorded during the visits in late March and early April 1981 reached a maximum of $153^{\circ}F$ on the wood surfaces in two systems. Air temperatures in these systems reached the $145^{\circ}F$ range. Other attics had air and surface temperatures of 100° to $140^{\circ}F$. The two sites with the highest recorded temperatures were those where gypsum board and plywood showed the most deterioration. Two solar attics were found in such a deteriorated condition during a repair visit that the entire plywood and gypsum board interiors had to be replaced. Figures 2-1 and 2-2 illustrate the conditions in which these systems were found. The foregoing findings led to the investigation described in Chapter 3 of this report, using instrumentation installed to monitor temperature profiles. While the remainder of the systems mentioned above did not show visible signs of degradation, they later received the same protection that was given all solar attics of this type.

Figure 2-1. Solar Attic Damage

Figure 2-2. Solar Attic Damage

SOLAR ATTICS-PYRAMIDAL OPTICS

Four solar attic type systems employed reflecting panels as opposed to the radiation absorbing panels of the other grants. They are designed to reflect the incoming solar radiation onto centrally located liquid absorber plates. The attics employed wood in contact with the absorber plate, with fiberglass insulation behind the plate. On two systems the fiberglass insulation was not installed and significant charring of the wood occurred. No material degradation or excessive surface or air temperatures were observed on the other two systems where the fiberglass had been installed. Figures 2-3 and 2-4 illustrate the conditions of the systems without fiberglass insulation.

SITE-BUILT AIR

Sixteen site-built systems using air as the transport medium were investigated. Three showed heat-related material degradation. Figure 2-5 is a cutaway illustration of the typical collector construction. In one project with 12 systems, according to design data, foil-faced rigid isocyanurate insulation is in contact with aluminum absorber plates. Core samples of the insulating boards from four of those systems were discolored to a moderate degree, showing that excessive heat was conducted to the boards. Several others showed slight discoloration. Temperatures in these collectors were measured at 75° F at the inlet and 160° to 180° F at the outlets. See Chapter 3 for further investigations of these 12 systems.

One system using wood and polystyrene insulation was investigated during the repair program. No deterioration of either material was noted.

Figure 2-3. Solar Attic Damage

Figure 2-4. Solar Attic Damage

Figure 2-5. Site-Built Collector Cutaway (Air)

SITE -BUILT LIQUID

Four projects with five systems using liquid absorber panels in site-built enclosures were investigated. These included collectors with absorber plates mounted directly on wood products, insulation, or asphalt roofing paper. None of the collector materials showed any sign of degradation. Three systems were reported to have been operating without previous stagnation. A fourth system is drained during the summer months and the collectors allowed to stagnate in a dry condition. The insulation in contact with the absorber plate is fiberglass and is able to withstand the temperatures encountered. The wood spacer between the absorber and glazing did not appear to be affected by the temperatures reached during these stagnation periods. Figure 2-6 is a cutaway illustration of the collector construction.

The fifth system investigated during the repair program showed slight charring of the plywood roof sheathing where the water passageways touched the sheathing. The absorbers were raised and reinstalled on sleepers during the repair process. Foil-faced 3½" fiberglass insulation was placed on the roof in the space between the sleepers, with the foil facing the absorber plates.

MANUFACTURED COLLECTORS

Ten systems with manufactured box collectors were investigated. One site, in which the box collector was mounted on sleepers above the roof, showed heat-induced degradation of the isocyanurate insulation. The collector is made with an aluminum case, a copper absorber with serpentine coil attached to the front of the

Figure 2-6. Site-Built Collector Cutaway (Liquid)

absorber, and 3/4" isocyanurate insulation attached to 1/8" masonite forming the back. The sides of the collector are also insulated with 3/4" isocyanurate. The surface of the insulation behind and touching the absorber plate had turned dark brown from heat and blended into a tan color toward the back surface. The masonite appeared to be in good condition. The insulation on the sides, which is exposed to ultraviolet rays in addition to the heat, had also turned dark brown and was brittle. Cores were taken from two of the collectors in the array, but all 47 collectors in the array showed evidence of the side insulation deteriorating. It is assumed that the insulation behind the absorber in the others is in a similar condition, based upon the edge insulation appearance.

Two other sites visited under the repair program use a collector with urethane insulation. Samples from the sites showed discoloration of the insulation. The collectors for one system are roof-mounted on sleepers. In the other system, the collectors are rack-mounted, four rows high with open backs.

The remaining seven systems had light discoloration, no discoloration, or (in one case) no insulation to be discolored or degraded.

CONCLUSIONS

The results of the survey show that no apparent fire-related life-safety hazards were present in the 54 systems investigated. While some collectors showed slight to moderate discoloration of various foam insulations, none were so disintegrated as to pose a threat to combustible materials beneath the insulation.

Based upon this survey, it would be speculative to predetermine the future longterm performance of foam-type insulations in actual use within collector assemblies. It is a fact that foam insulations will degrade significantly under test conditions subjecting them to elevated temperatures for long periods of time. Many knowledgeable individuals insist that this type of degradation will eventually occur when collectors are subjected to prolonged stagnation. While accurate determination of actual prior system stagnation periods (if any) for the systems inspected was not possible, this survey found no cases of significant foam insulation deterioration. However, tests at the Boeing laboratory indicate that urethane experiences an approximate 20% weight loss when exposed to 350°F (177°C) for 72 hours and the material darkened noticeably during the exposure. These results would seem to indicate that the recommended permissible temperature standard of 327°F (164°C) is not a safe maximum permissable temperature for urethane. It is possible that mounting conditions, glazings, stagnation potential, and other variable factors will preclude the existence of any hazard due to degradation of the insulating material. However, there is still the concern of diminished collector efficiency, caused by reduced thermal insulation values, to be considered. Additional details and analysis of this problem can be gained from two reports: Solar Collector Fire Incident Investigation (Reference 1) and Survey and Evaluation of Available Thermal Insulation Materials for Use on Solar Heating and Cooling Systems (Reference 2).

The high temperatures that exist in some solar attics and other collectors containing wood may affect certain characteristics of the wood, making it structurally weaker and lowering its ignition temperature. Various articles listed in the references indicate that temperatures in excess of 150° F will promote these changes. The higher the temperature, the more rapid and severe the change. The high temperatures recorded in the attics and in one site-built air collector were generated by the solar radiation during late March and early April. Intensity of radiation increases as the maximum sun angle is attained on June 21 and remains high throughout the summer months. Temperatures in the attics will increase and, even when the homeowner has activated the summer heat dump method, the temperatures may be above 150° F for extended time periods. Chapter 3 further discusses investigations of solar attics and site-built collectors.

CHAPTER 3. SOLAR ATTIC/SITE-BUILT COLLECTOR INVESTIGATIONS

To determine the long-term effects of high temperatures on wood and other materials used in constructing solar attics and collectors, three typical solar system configurations--two solar attic and one site-built--were selected for evaluation to provide a basis for proposed recommendations. This evaluation included a comparison of measured wood temperatures to allowable wood temperatures as determined from related research.

- o Configuration 1--a solar attic system incorporated in a standard attic structural configuration, represented by a home at Monterey, California
- o Configuration 2--a solar attic system included in a structure attached to a basic roof structure, represented by a home at Greenville, South Carolina
- Configuration 3--a site-built solar collector system incorporated into the roof rafter structure, represented by a twelve-unit condominium at North Conway, New Hampshire

Configurations are shown schematically in Figures 3-1, 3-2, and 3-3, and are described in Chapter 4.

Figure 3-1. Solar System Configuration 1

Preceding page blank

Figure 3-2. Solar System Configuration 2

.

VERTICAL SECTION THRU ROOF INTEGRATED SOLAR COLLECTOR WITH SUPPLY & RETURN

Figure 3-3. Solar System Configuration 3

Each configuration was instrumented to obtain internal wood temperature data during daily periods of insolation approximating seasonal averages. Data from solar attics were compared with data obtained from standard (non-solar) attic configurations, verifying that temperature extremes in solar attics were of sufficient magnitude to warrant a detailed analysis. Chapter 6 includes design recommendations and the rationale that supports recommendations. The rationale compares measured wood temperatures in solar attics and site-built collectors with maximum recommended temperatures obtained from available related research data. In addition, methods of limiting attic temperatures to maximum recommended values are listed.

Chapter 4 summarizes the detailed data obtained from each of the three solar configurations. Temperature measurements were taken during typical periods so that data analysis would allow the prediction of maximum long-term temperatures at critical locations in the wood structure. Temperature measurements for solar attics were taken with the systems not operating and with no ventilation, natural ventilation, and forced ventilation. Temperature measurements for the site-built solar collectors were taken with the system operating, vents closed; and with the system not operating, ventilation dampers open and closed.

To evaluate methods for limiting wood temperatures in solar attics and site-built collectors, measurements were taken under the following conditions:

- o wood painted flat black
- o wood with no coating, natural surface
- o wood covered with aluminum foil, aluminum-painted, or silver-painted reflective surfaces
- o wood protected by rigid insulation
- o natural and forced ventilation in solar attics

Chapter 5 includes the data analysis that supports the recommendations included in Chapter 6. Attachments A, B, and C to this report include detailed data for each configuration.

CHAPTER 4. DATA SUMMARY

This chapter includes a description of each of the three configurations shown in Chapter 3 and a summary of temperature measurements taken from each configuration.

CONFIGURATION 1, SOLAR ATTIC

This solar attic configuration includes a large, south-facing portion of the roof (500 sq. ft.) which is glazed with two layers of corrugated translucent fiberglass. Sunlight passing through the fiberglass panels is absorbed by black floor and wall surfaces designed to collect solar energy. The fiberglass panels are attached to 2x6 Douglas fir roof rafters which are painted black. The absorber material attached to the floor and walls is DuPont "Typar" (a 3-mil black polypropylene coating treated with an ultaviolet stabilizer) bonded to 1" sheets of rigid isocyanurate insulation (R-factor = 6.7), using a contact-cement with rubber base (Neoprene, Butyl, SBR, etc.) for the bonding agent. Prior to installation of the absorber material, black-painted plywood floors and gypsum board walls had deteriorated in the solar environment. The attic collector is ventilated by an exhaust fan on the west end of the building in conjunction with a power damper on the east end of the building. The controller sensor is located in the peak of the attic in the area of maximum temperature. This ventilation system replaced the previous system which consisted of two weatherproof, airtight, manual open/close air vents installed in the gable walls. One vent was high on the east wall and the other was high on the west wall, vented to the outside. A schematic drawing of the current system was shown in Figure 3-1.

Temperature data were taken in July and August 1981, approximately three years after construction of the solar attic. The data were taken under two conditions:

- o system not operating, manual air vents closed (Typar absorber, original vent configuration)
- o system not operating, powered fan operating (Typar absorber, data taken at two exhaust fan control settings)

Maximum temperature readings were taken during clear weather. Based on Forest Products Laboratory (FPL) data, wood moisture content was estimated to be 4.5 percent. Maximum solar insolation occurred between 1300 and 1330 hours. Maximum temperatures occurred between 1230 and 1500 hours and are tabulated in Table 4-1. Measurements were made in three rafters located at the quarter-points of the solar attic. Sensor locations for a typical rafter and tabulated maximum temperature data are included in Attachment A.

Comparative attic rafter temperatures were measured in a non-solar neighboring home during the same time period when the maximum outside ambient temperature was $72^{\circ}F$ and the maximum insolation was 302 BTU/Hr/Ft^2 (Attachment A, page A-6). A rafter temperature of $92^{\circ}F$ was recorded at a location comparable to the maximum temperature measurement location for Configuration 1.

A typical rafter was removed from the Configuration 1 solar attic and sent to FPL for analysis. The size and location of the rafter removed from the home and the

TABLE 4-1

- Sensor Location	System Not Operating- Manual Vents Closed	System Not Operating - Fan On @180 ⁰ F Fan Off @150 ⁰ F	System Not Operating - Fan On @160 ⁰ F Fan Off @130 ⁰ F
Solar Insolation, in Plane of Glazing	287 BTU/Hr/Ft ²	302 BTU/Hr/Ft ²	295 BTU/Hr/Ft ²
Collector Rafter, Internal Near Peak	198 ⁰ F*	194 ⁰ F	185 ⁰ F
Collector Rafter, Internal Near Eaves	194 ⁰ F*	192 ⁰ F	175 ⁰ F
Surface of Floor Insulation	209 ⁰ F	206 ⁰ F	196 ⁰ F
Center of Insulation	184 ⁰ F	186 ⁰ F	177 ⁰ F
Center of ½" Plywood	123 ⁰ F	116 ⁰ F	110 ⁰ F
Two Inches into 2x4 Joist	106 ⁰ F	98 ⁰ F	95 ⁰ F
Surface of Back Wall Insulation	188 ⁰ F	190 ⁰ F	177 ⁰ F
Surface of Back Wall	142 ⁰ F	137 ⁰ F	131 ⁰ F
Solar Attic, Ambient	175 ⁰ F	176 ⁰ F	162 ⁰ F
Outside Ambient	81 ⁰ F	72 ⁰ F	76 ⁰ F

CONFIGURATION 1, MAXIMUM TEMPERATURE DATA

*Structural member temperatures exceeded 150°F between 1100 hours and 1830 hours.

FPL analysis report are included in Attachment D. Test specimens removed from this rafter were tested to determine modulus of rupture (MOR) and the work to maximum load (W/V). The MOR is a measure of the load-carrying capacity of a material in bending. The W/V is a measure of displacement versus load per unit volume, i.e. the energy absorbed by the specimen as it is slowly loaded to failure. The results of these tests were compared to average values expected for Douglas fir. Test values were factored to account for the differences in moisture content between test specimens and expected averages. Factoring was necessary because strength typically varies inversely with changes in moisture content. Changes in ductility are variable depending on the species of wood. The data indicated structural degradation of 36% in MOR and 44% in W/V when compared to average FPL data compiled for Douglas fir. These results are considered as indications only because of normal data spread and the small number of specimens tested. In addition, it was noted that the wood quality of the rafters was poor with observed splitting and numerous knots.

CONFIGURATION 2, SOLAR ATTIC

This solar attic configuration is a peaked upper attic attached to and supported by a transition (lower) attic. The south-facing portion of the solar attic has 400 sq. ft. of translucent panels similar to those in Configuration 1. Panels are attached to 2x4 white fir roof rafters painted black. The floor of the solar attic is $\frac{1}{2}$ " plywood attached to 2x4 joists. The back wall is faced with gypsum board panels. Both floor and back wall are painted black. The attic collector is cooled in the summer by natural convection through eave vents and a ridge vent. All vents are operated manually. A schematic drawing of this system was shown in Figure 3-2.

Temperature data were taken in September 1981, approximately four years after construction of the solar attic. The data were taken under two conditions:

- o system not operating, vents open
- o system not operating, vents closed

Temperatures were read during clear weather, with a wood moisture content estimated at 7 percent. Maximum solar insolation occurred between 1330 and 1400 hours. Maximum temperatures occurred between 1500 and 1600 hours. Pertinent maximum temperature readings are tabulated in Table 4-2. Maximum temperature readings of rafters with reflective coatings are tabulated in Table 4-3. Data comparable to that provided for Configuration 1 are included in Attachment B.

Comparative lower attic (non-solar) rafter temperatures were measured when the maximum outside ambient temperature was 91°F and the maximum insolation was 275 BTU/Hr/Ft² (Attachment B, page B-4). A rafter temperature of 147° F was recorded at a location comparable to the maximum temperature measurement location for Configuration 2.

CONFIGURATION 3, SITE-BUILT COLLECTOR

The solar collectors for each of twelve units consist of eight 2x16 ft. panels installed between the rafters. The net area for each system is approximately 240 square feet. The collector backs are constructed of 1.4" thick double foil-faced

TABLE 4-2

Sensor Location	System Not Operating - Vents Closed	System Not Operating - Vents Open
Solar Insolation, in Plane of Glazing	275 BTU/Hr/Ft ²	307 BTU/Hr/Ft ²
Collector Rafter, Internal Near Peak	182 ⁰ F*	167 ⁰ F*
Collector Rafter, Internal Near Eaves	183 ⁰ F*	168 ⁰ F
Surface of Floor (Plywood)	169 ⁰ F	152 ⁰ F
Plywood/Joist Interface	156 ⁰ F	141 ⁰ F
Three-Quarters Inch into Joist	148 ⁰ F	132 ⁰ F
Two and One-Half Inch into Joist	139 ⁰ F	123 ⁰ F
West Back Wall, Gypsum Board Surface	151 ⁰ F	135 ⁰ F
Solar Attic Ambient	161 ⁰ F	137 ⁰ F
Outside Ambient	91 ⁰ F	82 ⁰ F

CONFIGURATION 2, MAXIMUM TEMPERATURE DATA

*Structural member temperatures exceeded 150°F between approximately 1230 hours and 1730 hours.

26

TABLE 4-3

Proposed Rafter Condition	System Not Operating - Vents Closed	System Not Operating - Vents Open
Reference Condition, Existing Rafter, Painted Black	182 ⁰ F	167 ⁰ F
Existing Black-Painted Rafter, Aluminum Foil Taped to Sides	169 ⁰ F	155 ⁰ F
Existing Rafter, Wrapped in Aluminum Foil, Open on Back Side	163 ⁰ F	147 ⁰ F
Existing Silver-Painted Rafter, Typar Taped to Sides	174 ⁰ F	160 ⁰ F
New Silver-Painted Rafter, Wrapped in Typar, Open on Back Side	163 ⁰ F	147 ⁰ F
New Silver-Painted Rafter	170 ⁰ F	155 ⁰ F
Existing Natural Rafter	169 ⁰ F	154 ⁰ F

CONFIGURATION 2, MAXIMUM TEMPERATURES WITH REFLECTIVE SURFACES

isocyanurate rigid insulation board (R-factor = 10.0). These boards are set between 2x6 spruce rafters on 3/4" thick furring strips nailed to the rafters. The rafters and all wood exposed to the inside of the collectors are coated with urethane type varnish. The absorber plates are corrugated, selectively coated, aluminum sheets resting directly on the isocyanurate insulation. The corrugations run vertically.

Air flow is basically at the back of the absorber plate, however no attempt was made to prevent air from flowing on the top of the plates as well. The cover plates are prefabricated double-glazed units with fiberglass on the outside and Tedlar on the inside. The plates are held to the rafters with aluminum batten strips bolted down. Joints are sealed with silicone caulking. Each system is ducted in a direct return configuration from a header at the top and bottom of each array. The headers also contain a heat dump system consisting of a damper on the lower header and a damper and turbine exhauster on the upper header discharging above the roof. A schematic drawing of this system was shown in Figure 3-3.

Temperature data were taken in June 1981, approximately one year after construction of the site-built collector. The data were taken under three conditions:

- o system operating, vents closed
- o system not operating, vents closed
- o system not operating, vents open

Temperature readings represent maximum values at the highest rafter location. This location is subjected to maximum temperatures because it is exposed to both direct solar radiation and the highest temperature air passing between the collector absorber plates and the rafters. Internal rafter temperature measurements were taken from probes inserted at various depths into selected rafters. Temperatures were read during clear weather. Outside ambient temperature was 87°F. Based on FPL data, wood moisture content was estimated to be 6.3 percent. Maximum solar insolation in the plane of glazing (292 BTU/Hr/Ft²) and maximum wood temperatures both occurred between 1300 and 1400 hours. Pertinent data are tabulated in Table 4-4. Schematic drawings showing temperature measurement locations and additional tabulated temperature measurement data are included in Attachment C. Data represent maximum values obtained from four separate rafter locations.

A typical rafter was removed and sent to FPL for analysis. Analysis procedures were the same as those applied to the Configuration 1 rafter. Data analysis indicated negligible difference in MOR between test samples and average values expected for spruce. The data indicated an increase in W/V for the test samples. These data are considered to be less valid than those taken from the Configuration 1 home (Douglas fir) because the time since fabrication was only one year and because the relatively small data sample included specimens from both direct solar-exposed parts and unexposed parts of the rafters. The FPL report is included in Attachment D.

TABLE 4-4

Sensor Location	System Operating- Vents Closed	System Not Operating – Vents Closed	System Not Operating – Vents Open
Collector Rafter, Internal Near Peak	188 ⁰ F	208 ⁰ F	201 ⁰ F
Collector Rafter, Internal Near Eaves	133 ⁰ F	153 ⁰ F	160 ⁰ F
Collector, Air	172 ⁰ F	222 ⁰ F	210 ⁰ F
Absorber Plates	209 ⁰ F	256 ⁰ F	258 ⁰ F
Isocyanurate Insulation, Top	168 ⁰ F	197 ⁰ F	206 ⁰ F
Isocyanurate Insulation, Bottom	130 ⁰ F	133 ⁰ F	137 ⁰ F
Solar Attic, Ambient	153 ⁰ F	153 ⁰ F	153 ⁰ F

CONFIGURATION 3, MAXIMUM TEMPERATURE DATA

CHAPTER 5. DATA ANALYSIS

The data summarized in Chapter 4 were analyzed to address the following questions:

- Are wood temperatures in solar systems a potential fire hazard, or of such a magnitude as to cause a reduction in the load-carrying capacity of the wood structure?
- o What practical methods are available to reduce the temperature of wood structure exposed to solar radiation?

POTENTIAL HAZARDS OF HIGH WOOD TEMPERATURES

Analysis of the FPL report <u>Smoldering Initiation of Cellulosics Under Prolonged</u> <u>Low-Level Heating</u> (Reference 3) indicates that concern for smoldering ignition has led to regulations limiting maximum temperatures to about $212^{\circ}F$ (100°C) for wood. Available data indicate that one year of heating at $302^{\circ}F$ (150°C) or over 10 years at 248°F (120°C) would be required to induce smoldering combustion. Research is continuing to provide more definitive information. Similarly, related FPL data in "Factors Which Influence Serviceability of Wood Structures: Temperature" (Reference 4) indicate that wood strength is reduced as temperatures increase, and above 150°F (66°C) for extended time periods strength becomes increasingly non-recoverable if subsequently evaluated at room temperature. Design allowable stresses for buildings are not reduced for short-term heating if air temperatures are less than 150°F, even though wood temperatures may exceed 150°F. The rationale for this is that wood strength relates inversely to wood moisture content and therefore increases as the wood dries out during temperature increases. The research also indicates that for brief exposures to temperatures up to 212°F (100°C), mechanical properties are fully recoverable.

MEASURED WOOD TEMPERATURES

As shown in Figures 5-1 and 5-4, measured temperatures are less than those considered to be potential fire hazards. Conversely, in all three configurations evaluated, wood temperatures exceeding 150° F were measured, substantiating the concern for degradation of wood structural members in solar systems. It was also verified that wood temperatures in solar systems exceed wood temperatures in conventional attics. Figure 5-1 compares maximum wood temperatures measured in Configuration 1 with those measured in a conventional attic in the same neighborhood during the same time period. Wood temperatures in the conventional attic were less than 100°F. A plot of maximum wood temperatures measured in the conventional lower attic of Configuration 2 shows that they are less than 150°F.

Maximum solar heating system rafter temperatures are caused by a combination of air temperature and direct solar radiation. The magnitudes of both energy sources are shown in Figures 5-2, 5-3, 5-5, and 5-6. The temperature response of each of the test configurations to these energy sources is discussed below.

Figure 5-1. Maximum Rafter Temperatures, Solar Attics

.

Figure 5-3. Maximum Attic Ambient Temperatures, Vents Closed

Figure 5-4. Maximum Rafter Temperatures, Site-Built Air Collector, Configuration 3

Figure 5-5. Solar Insolation, Site-Built Collector, Configuration 3

Figure 5-6. Maximum Air Temperatures, Site-Built Collector, Configuration 3

Configuration 1

A maximum solar attic rafter temperature of $198^{\circ}F$ was measured near the top. As shown in Figure 5-1, temperature variation between the top and bottom of the rafter is small. Figures 5-1 and 5-3 indicate that maximum solar attic temperatures (175°F) occur approximately one hour before maximum rafter temperatures.

Configuration 2

A maximum solar attic rafter temperature of $183^{\circ}F$ (Figure 5-1) was measured near the eaves. Again, Figure 5-1 indicates little temperature difference between the top and bottom of the rafter. A maximum solar attic temperature of $161^{\circ}F$ (Figure 5-3) was recorded. As shown in Figure 5-2, solar insolation for this test condition was somewhat less than when temperature measurements were taken for other test conditions.

Configuration 3

A maximum site-built collector rafter temperature of 208°F (Figure 5-4) was measured one foot from the top. Figure 5-4 shows rafter temperatures during a nonoperating period when the vents were closed. Temperature profiles are plotted for rafter locations 4 feet, 12 feet, and 15 feet from the bottom of the 16-foot collector. Figure 5-5 shows solar insolation for the day data were obtained. Figure 5-6 includes plots of collector air temperature and the ambient air temperature in the attic. It is interesting to note that a period of low solar insolation occurred during the day that reported site-built collector data were recorded. This day was selected because periods of very high solar insolation also occurred. Figures 5-4, 5-5, and 5-6 show that for site-built collectors, changes in the temperature of the rafter, collector air, and attic ambient air followed very closely the changes in solar insolation.

METHODS FOR REDUCING HIGH WOOD TEMPERATURES

Potential methods for reducing temperatures include forced and natural ventilation, reflective coating on wood surfaces, and thermal insulating materials covering wood surfaces.

Effects of Forced Ventilation, Solar Attics

The effects of forced ventilation were evaluated in Configuration 1. Figure 5-7 compares the effect on maximum rafter temperature of ventilation fans actuated at 160° F and 180° F. Comparing the attic ambient temperature when the fan is initially actuated at 160° F (Figure 5-8) with the effect on maximum rafter temperature (Figure 5-7), the following was observed: Attic ambient temperature dropped to below 150° F and could be maintained at that level with the fan on; maximum rafter temperature initially dropped and then remained approximately constant when the fan was on. The reduction in maximum rafter temperature can also be observed in the plot for fan-on at 180° F (Figure 5-7).

Effects of Natural Ventilation, Solar Attics

The effects of natural ventilation using eave and ridge vents were evaluated in Configuration 2. Figure 5-7 compares maximum rafter temperatures for two conditions, attic vents open and attic vents closed. As shown in Figure 5-8, ambient attic temperature was less than 150°F when attic vents were open. It should be noted that the air vents previously installed and replaced in gabled

Figure 5-7. Rafter Internal Temperatures, Solar Attics, Forced and Natural Ventilation

Figure 5-8. Maximum Solar Attic Ambient Temperatures, Forced and Natural Ventilation

walls had minimal effect in reducing attic air temperatures (as shown, ridge vents were more effective).

Effects of Natural Ventilation, Site-Built Collectors

The effects of natural ventilation on rafter temperatures with site-built collectors were shown in Figure 5-4. Maximum rafter temperatures, when the system was not operating, were compared for the vents-open and vents-closed conditions. Maximum temperatures occur at the top end of the rafter when vents are closed; however, from the three-quarter point down, rafter temperatures are higher when the vents are open.

Effects of Reflective Coatings, Solar Attics and Site-Built Collectors

The effects of reflective coating on maximum rafter temperatures for both solar attics and site-built collectors were evaluated using Configuration 2. Figure 5-9 compares various coatings during both vents-open and vents-closed conditions. The reduction in maximum rafter temperature by type of reflective surface appears to have the order shown in Table 5-1. Minimal difference was observed between the vents-open and vents-closed conditions.

Figure 5-9. Effect of Reflective Surfaces on Rafter Internal Temperatures

TABLE 5-1

-	Approximate Reduction in Rafter Temperature
Rafter wrapped in Typar or aluminum foil, open on back side	20 ⁰ F
Rafter with Typar or aluminum foil taped to sides	16 ⁰ F
Natural rafter	14 ⁰ F
Silver-painted rafter	12 ⁰ F

HOW REFLECTIVE COATINGS AFFECT RAFTER TEMPERATURES

Effects of Thermal Insulation, Solar Attics and Site-Built Collectors

The reduction of wood temperatures by applying rigid insulation between the wood surface and the energy source was evaluated for solar attics and site-built collectors using Configuration I (see Attachment A, p. A-4, data for July 9, 1981). Maximum temperature at the center of plywood floor sheathing was 123°F while maximum temperature on the Typar surface was 209°F. Similarly, maximum surface temperature on the back wall covering was 142°F while maximum temperature on the Typar surface was 188°F.

DESIGN CONSIDERATIONS

Evaluation of data suggests that to maintain wood or gypsum board temperatures at a satisfactory level, the following design requirements should be considered for solar attics:

- o When the system is not operating, natural or forced ventilation shall be provided so that the maximum attic ambient temperature does not exceed 150°F.
- Wood or gypsum board surfaces exposed to direct solar radiation shall be left natural or covered with a reflective coating. This condition coupled with a maximum attic temperature of 150°F will likely maintain maximum rafter temperatures at less than 150°F, based on the previous analysis indicating

that rafter temperatures remained constant when ventilation maintained attic temperature at 150° F. As seen in Figures 5-1 and 5-3, Configuration 1, an attic temperature of 150° F at 1200 hours relates to a maximum rafter temperature of 163° F. Figure 5-9 indicated that further reductions of 14 to 20° F can be expected with appropriate rafter surfaces.

 Wood surfaces adjacent to solar collector absorber material shall be isolated by thermal insulation with a minimum R-value of 7 and the capability to withstand surface temperatures in excess of 250°F. The insulation must also be ultraviolet (UV)-stabilized.

The same requirements are recommended for site-built collectors with the exception that when the system is not operating, the site-built collector should be vented; and thermal insulation adjacent to absorber materials shall have a minimum R-value of 10 to attenuate the higher expected collector air temperatures.

These proposed design requirements are consistent with previous HUD requirements based on the same or similar supporting data (Attachment E).

•

CHAPTER 6. RECOMMENDATIONS

Recommendations are made for both solar attics and site-built collectors. In each case the intent is to lower air temperatures, reduce the thermal absorptance of structural wood surfaces, and provide thermal insulation between wood or gypsum board surfaces and the collector absorber materials.

SOLAR ATTICS

- o Solar attics should incorporate ventilation systems designed to ensure that attic air temperatures do not exceed 150°F.
- o Structural wood material surfaces exposed to direct solar radiation should be left natural or protected by a reflective material.
- Wood and gypsum board surfaces adjacent to solar collector absorber material should be isolated by thermal insulation with a minimum R-value of 7. Insulation should be capable of withstanding surface temperatures in excess of 250°F and should be UV-stabilized.

SITE-BUILT COLLECTORS

- o Site-built air collectors should be vented when not operating.
- o Wood material surfaces exposed to direct solar radiation should be left natural or protected by a reflective material.
- Wood surfaces that form the collector box of site-built air collectors should be isolated from solar collector absorber material by thermal insulation with a minimum R-value of 10. Insulation shall be capable of withstanding surface temperatures in excess of 250°F and shall be UV-stabilized.

RATIONALE FOR RECOMMENDATIONS

The basis for the stated recommendations is a concern that high wood temperatures maintained for extended periods of time may result in fires or cause a reduction in the structural strength of critical wood members.

The possibility of fire was evaluated by comparing maximum measured wood temperatures to data obtained from related wood fire research. Temperature measurements from the solar attic configurations evaluated indicate that wood structures used as an absorber (i.e. black surface) reach temperatures exceeding 200°F during periods of maximum solar insolation. Measured wood temperatures exceeded 150°F for approximately 6½ hours during clear summer days. Similar temperatures were measured in rafters exposed to the inside of collectors built into the roof rafter structure. Maximum long-term wood temperatures measured in solar collectors were compared to data included in the FPL report (Reference 3) in order to evaluate potential fire hazards in the various collector configurations.

Preceding page blank

The FPL report states that fire is a concern under prolonged, low-level heating at temperatures over 212°F. Although temperatures measured in the three typical solar collectors evaluated did not exceed 212°F, they were high enough (for this limited sample) to verify the need for maximum temperature controls. Solar collector-related fires are a possibility in the absence of such controls.

Possible reductions in strength of wood members in solar collectors were evaluated by comparing predicted wood temperatures to FPL serviceability data (Reference 4). Based on these wood research studies, wood member temperatures in solar attics or solar collectors should be minimized. FPL has determined that strength may be reduced as wood temperatures increase above 150° F. Observance of the stated recommendations will maintain maximum temperatures well below the maximum allowable temperature (212° F) when considering fire hazards and reasonably close to the maximum allowable temperature (150° F) when considering structural strength.

Additional structural data were obtained from tests of samples taken from Configuration 1 and 3 rafters with known solar exposure histories. FPL performed these tests, which compared results with average values expected for the wood species tested. Although results were not conclusive, because of the limited number of test samples, significant strength reductions (approximately 40%) were observed in the Douglas fir test samples taken from Configuration 1. Data are included in the FPL report, Attachment D.

Data summarized and analyzed in Chapters 4 and 5 include methods for reducing internal wood temperatures. Field data taken from Configurations 1 and 2 (ventilated and unventilated) indicated that when black-painted rafters are exposed to direct solar radiation, internal wood temperatures exceed ambient by an average of 24°F. To evaluate the possibility of reducing the internal temperature of wood members, reflective coating experiments were performed during evaluation of Configuration 2. Results indicate that application of a reflective coating can reduce internal wood temperatures of black-painted rafters by approximately 12 to 22°F. In selecting the coating or determining the extent of coverage, consideration must be given to permitting normal moisture migration in wood, since strength is related to moisture content. Temperatures on a natural surface (uncoated) were approximately the same as those measured on surfaces of some reflective coatings.

Other methods evaluated that resulted in reduced temperatures in solar systems included: 1) natural ventilation in the ridge and eaves of solar attics, 2) forced ventilation of solar attics through gabled end walls, and 3) thermal insulating material between wood materials and solar absorbers in solar attics and site-built collectors.

•

REFERENCES

- William D. Walton. <u>Solar Collector Fire Incident Investigation</u> (NBSIR 81-2326). Washington, D.C.: National Bureau of Standards, Center for Fire Research, 1981.
- Versar Inc. & Burt Hill Kosar Rittleman Associates. Survey and Evaluation of Available Thermal Insulation Materials for Use on Solar Heating and Cooling Systems (DOE/CS/35363-T1). Albuquerque, N.M.: U.S. Department of Energy, Albuquerque Operations Office, 1980.
- 3. E. L. Schaffer. <u>Smoldering Initiation of Cellulosics Under Prolonged Low-</u> <u>Level Heating</u>. Madison, Wisc.: U.S. Forest Service, Forest Products Laboratory, 1979.

•

ATTACHMENT A TEMPERATURE SENSOR LOCATIONS AND RECORDED DATA

CONFIGURATION 1

Monterey, California

SUMMARY

This attachment includes a sketch showing the location of temperature sensors referred to in Chapter 4 of this report. In addition, temperature readings for each condition- evaluated were taken at one-half hour increments and are listed for days when maximum solar insolation was recorded. These data are an expansion of data included in Chapter 4 which lists only maximum temperature readings recorded.

:

÷

SENSOR LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Surface of Floor Insulation	Center of Insulation	Center of ½" Plywood	2" into 2x4 Joist	Surface of Back Wall Insulation	Surface of Back Wall	Solar Attic, Ambient	Outside Ambient
SENSOR IDENTIFICATION	I _o Btu/Hr/Ft ²	T ₁ ° _F	T ₂ °F	T ₃ °F	T ₄ °F	т ₅ °F	т ₆ °F	T7 °F	T ₈ °F	т ₉ °F	т ₁₀ °F
7-9-81 TIME 1000 1030 1100 1130 1200 1230 1300 1330 1400 1430 1500 1530 1600 1630 1700 1730 1800 1830	135 192 220 245 262 275 284 287 285 282 270 250 226 203 170 134 110 108	105 122 137 149 160 169 177 183 189 194 197 198 198 198 198 195 188 178 162 137	107 124 139 153 164 174 181 186 190 193 194 194 192 186 178 168 154 131	119 142 156 171 185 195 200 202 207 209 204 194 185 172 159 145 123 104	106 125 136 148 161 171 176 178 182 175 184 182 175 167 157 147 136 120 104	72 80 86 93 100 107 112 116 119 122 123 123 122 119 116 112 108 102	64 68 73 78 83 92 96 99 102 104 106 106 106 105 103 101 98	108 124 138 150 162 171 179 185 187 188 187 188 187 188 166 157 145 128 109	73 81 89 97 106 114 121 128 133 137 140 142 142 142 141 139 135 130 124	102 116 130 142 152 160 167 172 174 175 175 173 169 162 153 145 130 115	68 71 75 76 80 81 75 74 74 73 76 77 74 72 72 71 68 66

CONFIGURATION 1 TEMPERATURE MEASUREMENT DATA System Not Operating -- Manual Vents Closed

A-2

SENSOR LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter.	InternalNear Peak	Collector Rafter, InternalNear Eave	Surface of Floor Insulation	Center of Insulation	Center of ½" Plywood	2" into 2x4 Joist	Surface of Back Wall Insulation	Surface of Back Wall		Solar Attic, Ambient	Outside Ambient
SENSOR	I	т		Та	Т	т.	Τ.	T.	Т_	Ta		Т.	T
IDENTIFICATION	Btu/Hr/Ft ²	0	I F	°F	°F	°F	°F	°F	°F	°F		°F	°F
8-20-81	L				 				 				
TIME													
1000	165	1	05	107	119	107	68	59	108	70		101	66
1030	200	1	23	124	139	125	76	63	123	77		116	69
1100	230	1	38	138	152	136	83	68	139	86		129	72
1130	245	1	51	150	170	152	90	72	152	95		141	73
1200	265	1	63	159	184	165	97	77	163	103		151	72
1230	283	1	72	167	194	173	103	82	172	111		159	70
1300	295	1	73	166	156	148	103	86	141	113		146	69
1330	295	1	74	166	153	147	105	88	149	119		151	73
1400	295	1	75	166	166	157	108	90	154	123		156	76
1430	292	1	76	165	196	1//	110	91	1/7	126		162	71
1500	275	1	77	166	189	110	109.	93	172	126		156	73
1530	257	1	84	174	148	146	110	94	148	129		152	70
1600	233	1	82	171	172	157	109	94	169	130		156	70
1630	200	1	85	175	170	155	110	95	165	131		154	69
1700	171	1	82	163	.154	145	108	95	152	129		14/	6/
1730		1	/0	140	120	11/	103	95	127	124		128	6/
1800		1	37	122	103	102	97	- 93	108	117		108	66

CONFIGURATION 1 TEMPERATURE MEASUREMENT DATA System Not Operating -- Fan On @ 160°F, Fan Off @ 130°F

SENSOR LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Surface of Floor Insulation	Center of Insulation	Center of ½" Plywood	2" into 2x4 Joist		Surface of Back Wall Insulation	Surface of Back Wall	-	Solar Attic, Ambient	Outside Ambient	Non-Solar Home, 2"x4" Rafter, Internal (2%")Near Peak
SENSOR	I	T ₁	Τ ₂	Ta	T ₄	T ₅	T		T ₇	Τ _R		T ₉	TIO	τ ¹
IDENTIFICATION	Btu/Hr/Ft ²	^o F	°F	°F	٥F	°F	°F		°F	°F		°F	°F	°F
TIME	1	I					1	1	1		,		I	L
1000	167	106	107	122	112	74	65	5	111	77		104	62	
1030	200	123	125	139	125	79	68	5	123	82		115	65	
1100	230	138	140	151	136	85	71		138	90		129	65	
1130	250	151	153	168	151	91	75	5	151	97		141	65	
1200	265	162	164	183	164	98	79)	162	105		1 <i>5</i> 0	68	
1230	285	170	173	193	173	103	82	2	171	112		158	68	
1300	298	177	180	198	178	107	86		179	119		165	70	
1330	302	183	185	198	178	110	89)	185	125		170	69	
1400	298	189	189	204	183	113	92	2	189	131		174	70	90
1430	290	194	192	206	186	116	95	,	190	135		176	71	92
1 <i>5</i> 00	280	187	177	192	172	113	96		176	132		158	72	91
1530	264	191	182	188	173	115	96		181	136		168	68	-
1600	235	193	185	178	163	114	97	2	176	137		165	67	91
1630	202	192	183	173	158	113	98		168	136		160	70	-
1700	170	186	176	156	147	111	98		154	134		149	65	89
1730		172	160	122	119	105	97	,	129	128		128	65	
1800		138	132	104	103	99	94	Ļ	108	í 20		109	64	
1830		116	112	95	95	93	91		99	114		100	64	

CONFIGURATION 1 TEMPERATURE MEASUREMENT DATA System Not Operating -- Fan On @ 180⁰F, Fan Off @ 150⁰F

A-7

ATTACHMENT B TEMPERATURE SENSOR LOCATIONS AND RECORDED DATA

CONFIGURATION 2

Greenville, South Carolina

SUMMARY

This attachment includes a sketch showing the location of temperature sensors referred to in Chapter 4 of this report. In addition, temperature readings for each condition evaluated were taken at one-half hour increments and are listed for days when maximum solar insolation was recorded. These data are an expansion of data included in Chapter 4 which lists only maximum temperature readings recorded.

TYPICAL ATTIC SECTION AND SENSOR LOCATIONS

SENSOR LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Surface of Floor (plywood)	Plywood/Joist Interface	3/4" into Joist	2½" into Joist	West Back Wall, Sheetrock Surface	Solar Attic, Ambient	Outside Ambient	•	Rafter, Internal 740	Between Rafter A Sheathing
SENSOR	I	Т		T ₃	T ₄	Τ ₅	T ₆	T ₇	T ₈	Τ _ο		τ ¹	T ₁₀
IDENTIFICATION	Btu/Hr/Ft ²	°F	°F	°F	°F	°F	٥F	°F	°F	°ŕ		°F	°F
TIME													
1030	137	106	108	101	94	87	83	91	102	83		86	95
1100	170	119	122	114	105	96	90	100	113	89		95	105
1130	200	132	136	125	115	105	98	110	123	90		103	114
1200	225	143	147	135	124	114	106	118	133	87		112	122
1230	245	153	157	144	132	121	113	126	140	89		118	128
1300	26)	162	166	100	140	128	119	154	14/	89		124	134
1.00	27.5	170	179	161	14/	177	12)	141	1 57	00 Q1		130	140
1400	258	179	181	162	156	140	134	150	161	90		138	145
1 500	145	182	183	163	156	147	131	151	158	88		139	147
1530	085	181	181	156	155	148	139	150	155			140	145

CONFIGURATION 2 TEMPERATURE MEASUREMENT DATA System Not Operating -- Vents Closed

B-S

SENSOR LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Surface of Floor (plywood)	Plywood/Joist Interface	3/4" into Joist	2%" into Joist	West Back Wall, Sheetrock Surface	Solar Ațtic, Ambient	Outside Ambient
SENSOR	I _o Btu/Hr/Ft ²	τ ₁ °F	τ ₂ °F	τ ₃ °F	τ ₄ °F	τ ₅ °F	τ ₆ °F	т ₇ °F	т ₈ о _F	т ₉ ° _F
TIME 1000 1030 1100 1130	 159 193 220	86 99 112 124	89 103 116 129	84 94 105 115	78 86 96 104	72 80 88 96	69 75 82 89	75 83 90 98	82 92 99 107	71 78 80 80
1 200 1 230 1 300 1 330 1 400	245 267 285 300 307	134 143 150 155 160	140 148 155 160 164	124 131 138 144 149	113 120 126 131 136	103 110 115 120 125	96 102 107 111 115	105 112 118 123 128	114 120 125 131 134	80 85 81 82 82
1430 1500 1530 1600 1630	291 285 275 255 230	165 165 167 167 165	165 167 168 168 165	151 152 151 150 145	137 141 141 141 138	128 130 132 132 131	117 121 122 123 123	134 135 135 135	136 137 136 136 133	83 82 82 82 82
1700 1730 1800 1830 1900	202 163 113 038 018	161 156 147 137 125	160 154 144 132 120	140 135 127 119	135 131 125 119 112	129 126 122 117	121 119 116 113 109	132 128 123 118 112	130 126 119 113 107	81 82 81 79 77

CONFIGURATION 2 TEMPERATURE MEASUREMENT DATA System Not Operating -- Vents Open

RAFTER SURFACE CONDITION	Reference Condition, Painted Black	Existing Black-Painted Rafter, Aluminum Foil Taped to Sides	Existing Rafter Wrapped in Aluminum Foil, Open on Back Side	Existing Silver-Painted Rafter, Typar Taped on Sides	New Silver-Painted Rafter, Wrapped in Typar, Open on back	New Silver-Painted Rafter	Existing Natural Rafter
SENSOR	τ,	τ,	τ,	Τ,	т,	Τ.	Т,
IDENTIFICATION	o _F	°F	°F	°F	°F	°F	°F
TIME 1030 1100 1130 1200 1230 1300 1330 1400 1430 1500 1530	106 119 132 143 153 162 170 175 179 182 181 T 1	94 104 115 126 136 146 154 161 165 169 - - - - 2 3/4"	90 101 111 122 131 140 148 154 159 163 163 Rafter Se Location,	100 111 123 134 144 153 161 167 171 174 -	90 101 112 123 133 141 149 155 159 163 163	98 110 121 132 142 150 158 164 168 171 171	98 109 120 131 140 148 156 161 166 169 168
			CONFIGUE	RATION 2			

TEMPERATURES RESULTING FROM RAFTER REFLECTIVE SURFACES System Not Operating -- Vents Closed

RAFTER SURFACE CONDITION	Reference Condition, Painted Black	Existing Black-Painted Rafter, Aluminum Foil Taped to Sides	Existing Rafter Wrapped in Aluminum Foil, Open on Back Side	Existing Silver- Painted Rafter, Typar Taped to Sides	New Silver-Painted Rafter, Wrapped in Typar, Open on Black	New Silver-Painted Rafter	Existing Natural Rafter
SENSOR	T ₁	TI	TI	TI	T	T ₁	T
IDENTIFICATION	^o F	^o F	^o F	^o F	^o F	^o F	^o F
TIME 1030 1100 1130 1200 1230 1300 1330 1400 1430 1500 1530 1600 1630 1700 1730	99 112 124 134 143 150 155 160 163 165 167 167 165 161 156	86 96 107 117 126 134 141 147 150 153 155 155 155 154 151 147	81 91 100 109 118 125 132 138 141 145 146 147 147 144 141	92 103 113 123 132 139 145 151 154 157 159 160 159 155 151	88 100 112 123 133 141 148 153 157 161 163 164 163 161 157	89 100 111 121 129 136 142 147 151 153 155 155 155 154 151 147	90 101 111 121 129 136 142 147 150 153 154 154 153 149 145
	TI	Raft Loca 2 3/4"	er Sensor tion, Typica	al			
TEMP						056	

•

B-8

TEMPERATURES RESULTING FROM RAFTER REFLECTIVE SURFACES System Not Operating -- Vents Open

ATTACHMENT C TEMPERATURE SENSOR LOCATIONS AND RECORDED DATA

CONFIGURATION 3

North Conway, New Hampshire

.

This attachment includes a sketch showing the location of temperature sensors referred to in Chapter 4 of this report. In addition, temperature readings for each condition evaluated were taken at one-half hour increments and are listed for days when maximum solar insolation was recorded. These data are an expansion of data included in Chapter 4 which lists only maximum temperature readings recorded.

C-4

SENSOR LOCATION	Solar Insolation, in Plane of Glazing		Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Collector, Air		Absorber Plates	Isocyanurate Insulation, Top	Isocyanurate Insulation, Bottom	Heat Dump, Ambient
SENSOR	I		Τ,	Т.	 T ₂		Τ,	T ₅	T	Τ,
IDENTIFICATION	o Btu/Hr/Ft ²		°F	٥F	°F		٥ _F	°F	°F	°F
6-28-81		J			 				,	
TIME										
1000	160		143	111	154		172	137	101	110
1030	185		160	122	173		194	153	108	120
1100	215		176	131	190		214	167	115	130
1130	240		189	139	200		229	179	121	139
1200	270		199]44	211		241	189	126	146
1230	275		207	151	220		251	197	131	151
1300	287		208	153	222		256	197	133	153
1330	292		169	132	199		229	151	116	133
1400	77		168	131	151		167	160	121	124
1430	100		192	147	193		218.	195	132	148
1 500	237		183	142	198		228 [·]	181	127	142
1530	200		187	150	192		221	180	129	142
1600	40		169	141	126		135	139	121	123
1630	164		160	135	161		181	155	121	128
1700	123		155	137	148		162	146	119	122
1730	90		145	130	131		142	133	115	116
1800	60		132	120	114		123	120	110	110

CONFIGURATION 3 TEMPERATURE MEASUREMENT DATA System Not Operating -- Vents Closed .

.

.

SENSOR ' LOCATION	Solar Insolation, in Plane of Glazing	Collector Rafter, Internal-Near Peak	Collector Rafter, InternalNear Eave	Collector, Air		Absorber Plates	Isocyanurate Insulation, Top	Isocyanurate Insulation, Bottom	Heat Dump, Ambient
SENSOR	I	Т.	Т.	Τ,		Т,	T ₅	T,	T-
IDENTIFICATION	o Btu/Hr/Ft ²	°F	٥F	°F		°F	°F	°F	°F
6-28-81					•				
TIME									
1000	160	133	120	147		173	141	103	110
1030	185	149	131	164		194	158	111	120
1100	215	165	141	180		215	174	119	130
1130	240	179	149	190		230	186	125	139
1200	270	187	153	199		243	197	131	146
1230	275	198	159	207		252	205	136	151
1300	287	201	160	210		258	206	137	153
1330	292	167	136	182		228	154	11/	133
1400	//	163	134	14/		168	163	124	124
1430	100	18/	149	189		222	203	136	148
1500	237	182	144	189		228	188	130	142
1530	200	171	149	182		120	132	122	142
1600	40	1/8	141	122		120	150	122	122
1020	104	160	133	1/1		160	1/17	120	120
1700	90	152	122	191		1//0	14/	115	116
1800	60	137	118	110		121	119	110	110

CONFIGURATION 3 TEMPERATURE MEASUREMENT DATA System Not Operating -- Vents Open •

C-6

· · ·

SENSOR	Solar Insolation, in Plane of Glazing	Collector Rafter, InternalNear Peak	Collector Rafter, InternalNear Eave	Collector, Air	Absorber Plates	Isocyanurate Insulation, Top	Isocyanurate Insulation, Bottom	Heat Dump, Ambient
SENSOR	I	т.	Ta	T ₂	Т.		T.	т_
IDENTIFICATION	o Btu/Hr/Ft ²	°F	°F	oF	° _F	°F	° _F	°F
6-28-81 TIME					•			
1000	160	134	107	117	135	116	99	110
1030	185	145	112	131	152	128	106	120
1100	215	158	118	145	169	141	114	130
1130	240	171	125	155	184	152	120	139
1200	270	180	129	162	195	161	125	146
1230	275	188	133	170	204	168	130	151
1 300	287	187	133	172	209	168	130	153
1330	292	152	114	154	187	135	112	133
1400	77	147	114	116	133	134	119	124
1430	100	167	126	155	183	168	131	146
1 500	237	160	122	156	186	156	125	142
1530	200	162	125	153	180	154	127	142
1600	40	152	121	102	114	117	116	123
1630	164	137	115	129	148	134	118	128
1700	123	134	115	120	134	126	116	122
1730	90	127	112	110	121	1 17	112	116
1800	60	118	107	100	110	109	108	110

CONFIGURATION 3 TEMPERATURE MEASUREMENT DATA System Operating -- Vents Closed

C-7

,

ATTACHMENT D

FOREST PRODUCTS LABORATORY REPORT

RAFTER ANALYSIS, CONFIGURATIONS 1 AND 3

.

UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Forest Products Laboratory Box 5130 Madison, WL 53705 4700-1

4700-1 October 15, 1981

r Mr. H. R. Sparkes, District Manager Dubin - Bloome Associates, P.C. 312 Park Road West Hartford, CT 06107

·Dear Bub:

You had forwarded two rafters from attic type solar collectors in Miramec, Gallf. und North Conway, N.H. along with relevant temperature histories at each location.

The rafter section from North Conway was identified as being Spruce and that from Miramee Douglas-fir. From each rafter clear specimens 1- by 1.5- by 22-inches long were extracted. These were subjected to standard center point bending tests with each specimen oriented wo that the outside edges of the rafter were at the top and bottom of the bending test specimens. Determined for each specimen were:

Modulus of rupture (MOR) Modulus of elasticity (MOE) Work to maximum load (W/V)

A summary of the results of the tests is included as Table 1 and 2.

If these results are compared with species averages (at equivalent mulsture contents and specific gravities), the following is seen:

		MOR		W/V
	Spruce	Douglas-fir	Spruce	Douglas-fir
Observed	10,180	7,985	11.05	5.12
Species population	10,200	12,400	8.4	9.1

H. R. Sparkes

The Douglas-fir appears to be significantly lower in bending strength and is also lower in work obsorption capacity. The spruce is close to that obtained for the spruce population.

We can only conclude from this very limited data and analysis, that it is possible that the Douglas-fir rafter from Miramec, Calif. is lower in strength than the Douglas-fir population. This may be due to a number of factors of which one is thermal degradation in the solar collector in California. Testing of a much larger number of specimens would be required to prove whether the effect observed in one rafter is real or just the occurrence of chance.

Sincerely,

Enon L Sche

E. I. SCHAFFER, Project Leader Fire Design Engineering

TABLE 1

MECHANICAL PROPERTIES OF BENDING TEST SPECIMENS FROM SOLAR COLLECTOR RAFTER IN NORTH CONWAY, N.H. (SPRUCE)

Specimen	MOR	Work per Unit	MOE	Moisture	Dry Spec.
No.	(psi)	Volume	(Ksi)	Content	Gravity
		(inlb/in ³)		(%)	
AB-1	11,730	11.93	1,698	8.22	.418
AB-2	12,620	12.42	1,740	7.51	.412
AB-3	13,210	12.75	1,649	4.66	.419
AB-4	12,210	11.26	1,594	6.43	.414
AT-1	13,260	12.03	1,736	7.13	.415
AT-2	12,780	14.05	1,684	6.92	.403
AT-3	11,730	6.18	1,704	4.82	.401
AT-4	13,820	13.13	1,901	4.83	.418
Mean	12,670	11.72	1,713	6.32	.412
S.D.	752	2.39	89	1.38	.007
COV	5.89 %	20.4%	5.22%	21 .8 %	1.7%

5

TABLE 2

MECHANICAL PROPERTIES OF BENDING TEST SPECIMENS FROM SOLAR COLLECTOR RAFTER IN MONTEREY, CALIF. (DOUGLAS FIR)

Specimen No.	MOR (psi)	Work per Unit Volume	MOE (Ksi)	Moisture Content	Dry Spec. Gravity
		(inlb/in ⁻)		(%)	
B-1	11,430	4.96	1,815	5.28	.472
B-2	9,400	3.11	1,787	4.50	.467
B-3	8,080	2.07	1,753	5.89	.496
B-4	9,870	3.55	1,810	4.96	.496
T-1	13,450	9.35	1,945	4.63	.477
T-2	12,740	7.65	1,968	4.02	.474
T-3	12,690	4.89	2,354	3.91	.517
T-4	12,080	5.30	1,743	5.00	.443
T-5	11,070	6.81	1,890	4.38	.471
T-6	12,470	7.67	1,898	3.70	.450
T-7	7,010	1.55	1,798	3.96	.440
T-8	8,600	2.54	1,692	4.10	.464
Mean	10,740	4.95	1,871	4.53	.472
S.D.	2,102	2.50	173	0.65	.023
cov	1 9.5 8%	50.5%	9.3%	14.4%	4.8%

. .

. •

ATTACHMENT E

HUD SOLAR ATTIC COLLECTOR SYSTEM SAFETY CONDITIONS

•

Memorandum

U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

TO: Thomas Sherman, Director Office of Public Housing, HGP SEP 2 8 1981

IN REPLY REFER TO:

FROM: Joseph Sherman, Division of Energy, Building Technology and Standards Research, TRB

SUBJECT: Solar Attic Collector Systems

Reference is made to your memoranium of September 13, 1901, on the same subject. We became concerned about possible problems with solar attic collector systems when we found significant deterioration of some wood products which had been exposed to temperatures over 200°F. When exposed to such temperatures for extended periods, wood can change its properties; in particular, both the structural strength and ignition temperatures can be significantly reduced.

After collecting and evaluating information on the performance of several of these systems, we believe that the solar attic collector concept is safe, provided certain conditions are met. We have advised Dominic Eng, of the Technical Support Division, that any project approval recommended by your office should incorporate the following six safety conditions:

1. All structural members (rafters, truss members, etc.) exposed to direct solar radiation must be painted white. In order to permit normal moisture migration in the wood, however, we suggest that the lower edge of the rafter, not exposed to sunlight, be left without paint.

2. No plywood or gypsum board panels are to be used is absorbers by being painted black and exposed to direct solar radiation. We have found these materials to be severely deteriorated in this use. Other materials, capable of withstanding the high temperatures from direct radiation, should be used.

E-3
3. The material chosen for the absorbing surface must be isolated from any supporting plywood, gypsum board, or other wood framing members. The inculation must withstand the high temperatures of the absorber material.

4. The peak of the solar collector area is not to be a structural part of the roof system. This area is subjected to the highest ambient temperatures.

5. The maximum ambient air temperature in the attic is not to exceed 150°F. This can be achieved either by using a fan system or by providing a gravity ventilation system with temperature-controlled dampers. I don't think HUD should specify the type of system, but your field offices should review the approach taken by the builder.

6. No wiring is to be run through the heated attic area. High attic temperatures can degrade wire insulation.

With these provisions, I believe that solar attic collector systems can safely be used in HUD housing programs.

Director

- 2 -

CREDITS

The Technical Services group of BE&C Engineers (a Boeing subsidiary) produced this management support contractor's report. Government Technical Representatives Robert C. Jones, Jr. and William Freeborne furnished general guidance. As the Boeing program manager, David R. Beers was responsible for overall direction. James D. Akins, Robert J. Cole, Randolph Kirk, and John C. Stevens prepared the text for Volume III, with a Dubin-Bloome Associates contribution from H. Robert Sparkes. E. K. Muller was book manager, aided by Kathryn M. Talbott, secretary, and George Gulacsik, artist.